
Course Code: 23MTCSTO1

 MALINENI LAKSHMAIAH WOMEN'S ENGINEERING COLLEGE

 MALINENI LAKSHMAIAH WOMEN'S ENGINEERING COLLEGE (AUTONOMOUS) (AUTONOMOUS)

 I-M.Tech. I-Semester (MR23) Regular Examinations, March - 2024

 I-M.Tech. I-Semester (MR23) Regular Examinations, March - 2024

 Mathematical Foundations for Computer Science (MFCS)

 Mathematical Foundations for Computer Science (MFCS) COMPUTER SCIENCE \& ENGINEERING

 COMPUTER SCIENCE \& ENGINEERING}

Time: 3 hours
Max. Marks: 75
Answer ALL the questions -5*15=75 Marks

$\begin{gathered} \text { Q. } \\ \text { No. } \end{gathered}$	Question		Marks	CO	BL
1	a)	Suppose $f x=c 3 x f o r x=1,2,3 \ldots \ldots \ldots n$ the probability function of a random variable X, then (i) determine the value of c (ii) find the distribution function of $\mathrm{X} \& P(X \geq 3)$	(8M)	CO1	L2
	b)	The joint probability function of two discrete random variables X and Y is given by $f(x, y)=c(2 x+y)$ where X and Ycan assume all integers such that $0 \leq x \leq 2,0 \leq y \leq 3$ and $f(x, y)=0$ other wise. Find i) the value of c ii) $E(X)$ iii) $E(Y)$ iv) $\operatorname{Var}(X)$ and $\operatorname{Var}(Y)$.	(7M)	CO1	L3
(OR)					
	a)	Let X and Y have joint density function $f x, y=2 e-x+y f$ or $x \geq 0 ; y \geq 00$ otherwise Then find conditional expectation of(i) Y on X (ii) X on Y	(7M)	CO2	L1
2	b)	A businessman goes to hotels X, Y, Z, 20\%,50\%,30\% of the times respectively. It is known that $5 \%, 4 \%, 8 \%$ of the rooms in $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ hotels have faulty plumbing's. What is the probability that businessman room having faulty plumbing is assigned to hotel Z .	(8M)	CO2	L2

3	a	It has been claimed that in 60% of all solar installations 'utility bill reduced to by one- third.Accordingly, what are probabilities utility bill reduced to by at least one- third (i) in fr of five installations and (ii) at least fr of five installations	(8M)	CO 2	L2
	b	Derive the mean, variance, coefficient skewness\& kurtosis for Poisson's distribution	(7M)	CO 2	L3
(OR)					
4	a	If 20% of memory chips made in a certain plant are defective, then what are the probabilities, that a randomly chosen 100 chips for inspection (i) at most 15 will defective (ii) at least 25 will be defective (iiiin between 16 and 23 will be defective	(8M)	CO2	L2
	b	Derive the mean and variance of Exponential distribution.	(7M)	CO 2	L3

5	a	The following shows corresponding values of three variables $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$. Find least square regression equation $Z=a+b x+c y$ $\begin{array}{\|llllllllll} \mathrm{x} & 1 & 2 & 1 & 2 & 3 \\ \mathrm{y} & 2 & 3 & 1 & 1 & 2 & \\ z & 12 & 19 & 8 & 11 & 18 \end{array}$	(7M)	CO3	L2
	b	Explain the procedure for fitting an exponential curve of the form $y=a e b x$.	(8M)	CO3	L3
(OR)					
6	a	What the properties of a good estimator. Explain each of them	(8M)	CO3	L2
	b	Suppose that n observations $X 1,2 \ldots \ldots .$. Xnaremade from normal distribution and variance is unknown. Find the maximum likelihood estimate of the mean.	(7M)	CO3	L3

7	a	Prove that in any non- directed graph there is even number of vertices of odd degree.	(7M)	CO4	L2
	b	State and prove Euler's formula for planar graphs.	(8M)	CO 4	L3
(OR)					
8	a	Prove that a tree with ' n ' vertices have $\mathrm{n}-1$ edges.	(8M)	CO 4	L2
	b	If T is a binary tree of n vertices, show that the number of pendant vertices is $n+1 / 2$	(7M)	CO4	L3

9	a	Using the principles of Inclusion and exclusion find the number of integers between 1 and 100 that are divisible by 2,3 or 5 .	(7M)	CO5	L2
	b	Find the number of integral solutions for $x 1+x 2+x 3+x 4+x 5=50$ where $x 1 \geq 4, x 2 \geq 7, x 3 \geq 14, x 4 \geq 10, x 5 \geq 0$	(8M)	CO5	L3
(OR)					
10	a	Solve the recurrence relation $012721=+--\mathrm{n} \mathrm{nn}$ a aa for n $00202 \geq$ using Generating function method.	(8M)	CO5	L2
	b	Solve an-7a(n-1)+10a(n-2)=4n for $n>=2$	(7M)	CO5	L3

