Hall Ticket No.:												Set-1
------------------	--	--	--	--	--	--	--	--	--	--	--	-------

Course Code: 23MTCST01 MALINENI LAKSHMAIAH WOMEN'S ENGINEERING COLLEGE

(AUTONOMOUS)

I-M.Tech. I-Semester (MR23) Regular Examinations, March - 2024 Mathematical Foundations for Computer Science (MFCS) COMPUTER SCIENCE & ENGINEERING

Time: 3 hours

Max. Marks: 75

Answer ALL the questions – 5*15=75 Marks

Q. No.		Question	Marks	со	BL
	a)	Suppose $fx = c \ 3x for x=1,2,3,\dots,n$ the probability function of a random variable X , then (i) determine the value of c (ii) find the distribution function of X & $P(X \ge 3)$	(8M)	CO1	L2
1	b)	The joint probability function of two discrete random variables X and Y is given by $f(x,y) = c (2x + y)$ where X and Y and Y assume all integers such that $0 \le x \le 2$, $0 \le y \le 3$ and $f(x,y) = 0$ other wise. Find i) the value of c ii) E (X) iii) E(Y) iv) Var(X) and Var(Y).	(7M)	CO1	L3
		(OR)			
	a)	Let X and Y have joint density function $fx,y = 2e - x + yforx \ge 0; y \ge 0$ <i>otherwise</i> Then find conditional expectation of(i) Y on X (ii) X on Y	(7M)	CO2	L1
2	b)	A businessman goes to hotels X, Y, Z, 20%,50%,30% of the times respectively. It is known that 5%,4%,8% of the rooms in X, Y, Z hotels have faulty plumbing's. What is the probability that businessman room having faulty plumbing is assigned to hotel Z.	(8M)	CO2	L2

3	a	It has been claimed that in 60% of all solar installations 'utility bill reduced to by one- third.Accordingly, what are probabilities utility bill reduced to by at least one- third (i) in fr of five installations and (ii) at least fr of five installations	(8M)	CO2	L2
	b	Derive the mean, variance, coefficient skewness& kurtosis for Poisson's distribution	(7M)	CO2	L3
	(OR)				
4	a	If 20% of memory chips made in a certain plant are defective, then what are the probabilities, that a randomly chosen 100 chips for inspection (i) at most 15 will defective (ii) at least25 will be defective (iiiin between 16 and 23 will be defective	(8M)	CO2	L2
	b	Derive the mean and variance of Exponential distribution.	(7M)	CO2	L3

5	a	The following shows corresponding values of three variables X,Y,Z. Find least square regression equation Z= a+bx+cy x 1 2 1 2 3 y 2 3 1 1 2 z 12 19 8 11 18	(7M)	CO3	L2
	b	Explain the procedure for fitting an exponential curve of the form y = aebx.	(8M)	CO3	L3
	а	What the properties of a good estimator. Explain each of them	(8M)	CO3	L2
6	b	Suppose that n observations <i>X</i> 1,2 <i>Xnaremade</i> from normal distribution and variance is unknown. Find the maximum likelihood estimate of the mean.	(7M)	CO3	L3
	·			•	•

7	a	Prove that in any non- directed graph there is even number of vertices of odd degree.	(7M)	CO4	L2	
	b	State and prove Euler's formula for planar graphs.	(8M)	CO4	L3	
(OR)						
	а	Prove that a tree with 'n' vertices have n-1 edges.	(8M)	CO4	L2	
8	b	If T is a binary tree of n vertices, show that the number of pendant vertices is $n+1/2$	(7M)	CO4	L3	
L	\mathbf{Q}					

9	a	Using the principles of Inclusion and exclusion find the number of integers between 1 and 100 that are divisible by 2 ,3 or 5.	(7M)	CO5	L2
9	b	Find the number of integral solutions for $x1+x2+x3+x4+x5=50$ where $x1 \ge 4$, $x2 \ge 7$, $x3 \ge 14$, $x4 \ge 10$, $x5 \ge 0$	(8M)	CO5	L3
	(OR)				
10	a	Solve the recurrence relation 0 12 7 2 1 =+ n nn a aa for n $00202 \ge$ using Generating function method.	(8M)	CO5	L2
	b	Solve $an-7a(n-1)+10a(n-2)=4n$ for $n \ge 2$	(7M)	CO5	L3
